

Plan Climat Air Énergie Territorial adossé au SCoT du Bergeracois

Diagnostic des émissions de GES, des consommations et des productions d'énergie du territoire

1.	Résumé non technique	
2.	Diagnostics	
	2.1. Diagnostic des émissions	Χ
	énergétiques, des consommations et	
	production d'énergie	
	2.2. Adaptation au changement climatique et qualité de l'air	
	2.3. Évaluation de la séquestration nette de carbone	
	2.4. Focus sur les réseaux d'énergie	
	2.5. Note GES SCoT	
3.	Stratégie et programme d'actions	
	3.1. Stratégie bas carbone	
	3.2. Programme d'actions : SyCoTeB et	
	intercommunalités	
	3.3. Démarche de suivi et évaluation	
	3.4. Note de préconisations pour la révision	
	du SCoT	
	3.5. Évaluation environnementale	
	stratégique	

Sommaire

1.	Le	territoire du SCoT Bergeracois4	
	1.1.1	Carte d'identité du territoire	4
	1.1.2	Un territoire engagé dans la transition énergétique	4
2.	Le	diagnostic énergétique du territoire5	
	2.1	Consommation d'énergie	5
	2.1.1	Le profil énergétique du territoire	5
	2.1.2	Le type d'énergie consommée	6
	2.1.3	Les consommations d'énergie par EPCI	7
	2.2	Production d'énergies renouvelables	8
	2.2.1	Analyse de la capacité de production actuelle	
	2.2.2	Analyse du productible ENR actuel	9
3.		diagnostic des émissions de GES du territoire10	
	3.1	Résultats globaux : Bilan Carbone® du territoire	
	3.1.1	Résultats globaux : Bilan Carbone® du territoire	
	3.1.2	Résultats globaux : Bilan Carbone® par EPCI	
	3.2	Analyse par secteur : l'industrie	
	3.2.1	Sources	
	3.2.2	Méthodologie	
	3.2.3	Résultats et analyse	
	3.2.4	Les premières pistes pour agir sur le territoire	
	3.3	Analyse par secteur : le tertiaire	
	3.3.1	Sources	
	3.3.2	Méthodologie	
	3.3.3	Résultats et analyse	
	3.3.4	Les premières pistes pour agir sur le territoire	
	3.4	Analyse par secteur : le résidentiel	
	3.4.1	Sources	
	3.4.2	Méthodologie	
	3.4.3	Résultats et analyse	
	3.4.4	Les premières pistes pour agir sur le territoire	
	3.5	Analyse par secteur : l'agriculture	
	3.5.1	Sources	
	3.5.2	Méthodologie	
	3.5.3	Résultats et analyse	
	3.5.4	Les premières pistes pour agir sur le territoire	
	3.6	Analyse par secteur : le transport	
	3.6.1	Sources	
	3.6.2	Méthodologie	
	3.6.3	Résultats et analyse	
	3.6.4	Les premières pistes pour agir sur le territoire	
	3.7	Analyse par secteur : la construction et la voirie	
	3.7.1	Sources	
	3.7.2	Méthodologie	
	3.7.3	Résultats et analyse	
	3.7.4	Les premières pistes pour agir sur le territoire	
	3.7.5	Focus sur les matériaux biosourcés	∠3

	3.8	Analyse par secteur : les déchets	24
	3.8.1	Sources	24
	3.8.2	Méthodologie	24
	3.8.3	Résultats et analyse	24
	3.8.4	Les premières pistes pour agir sur le territoire	
	3.9	Analyse par secteur : les biens de consommation	
		Sources	
		Méthodologie	
		Résultats et analyse	
		Les premières pistes pour agir sur le territoire	
		Analyse par secteur : l'alimentation	
	3.10.1	Sources	
	3.10.2	Méthodologie	
	3.10.3	Résultats et analyse	27
	3.10.4	Les premières pistes pour agir sur le territoire	
	3.10.5	Focus sur les circuits courts	
1.	Anne	exe 1 : le bilan carbone30	
5.	Anne	exe 2 : le détail des consommations d'énergie et émissions de GES par EPCI32	
3.	Anne	exe 3 : liste des communes34	

1. Le territoire du SCoT Bergeracois

1.1.1 Carte d'identité du territoire

Le territoire est composé de 3 communautés de communes et 1 communauté d'agglomération (périmètre 2016 du SCOT – liste des communes en annexe) :

- La Communauté d'Agglomération Bergeracoise (CAB)
- La Communauté de Communes Portes Sud Périgord (CCPSP)
- La Communauté de Communes de Sigoulès (CCS)
- La Communauté de Communes des Bastides Dordogne-Perigord (CCBDP) intégrée en 2016.

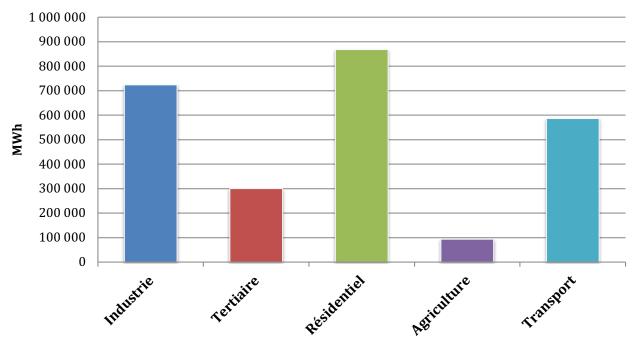
	САВ	CCPSP	CCBDP	cccs
Population	56 001	8 527	18 630	4 801
Communes	27	28	49	11

1.1.2 Un territoire engagé dans la transition énergétique

Porteur du PCAET pour ses EPCI, le SCOT est aussi lauréat de l'appel à projet TEPCV¹ du Ministère de l'Environnement, et bénéficie dans ce cadre de financements pour des actions énergie-climat.

¹Territoire à Energie Positive pour la Croissance Verte

2. Le diagnostic énergétique du territoire


2.1 Consommation d'énergie

Les consommations énergétiques du territoire ont été fournies par l'ORECCA².

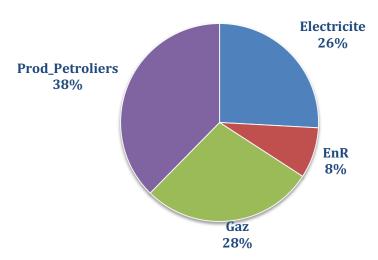
2.1.1 Le profil énergétique du territoire

Le territoire du SCOT du Bergeracois a une consommation annuelle d'énergie de **2 600 GWh**. Cela correspond par exemple à ¼ de la production annuelle à pleine puissance d'un réacteur 1300 MW de la centrale nucléaire de Golfech.

Consommations d'énergie du SYCOTEB Consommations par secteur, en MWh

Le premier poste de consommation d'énergie du territoire est celui du **résidentiel** (34% des consommations), devant **l'industrie** (28%) puis le **transport** (23%).

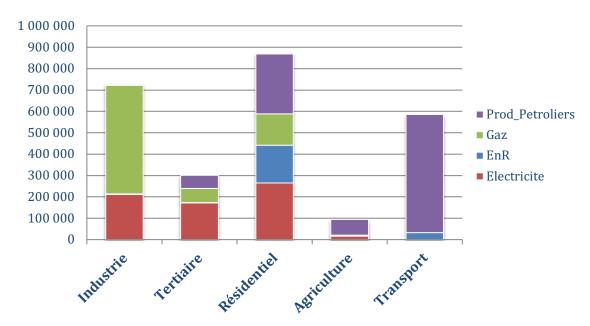
En cumulant résidentiel et tertiaire, le bâtiment compte pour 46% des consommations d'énergie.


5

²Observatoire Régional Energie Changement Climatique Air en Aquitaine

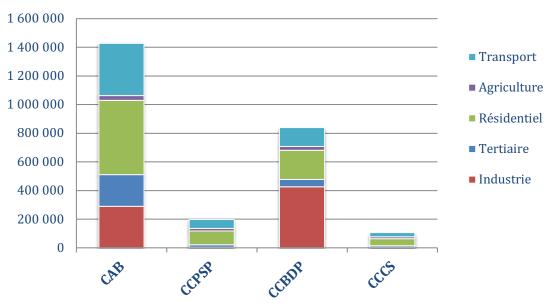
2.1.2 Le type d'énergie consommée

Consommations d'énergie finale du SYCOTEB


Consommations par type, en %

La première énergie consommée est celle des **produits pétroliers** (38%) qui se compose du carburant pour les véhicules et du fioul, butane, propane pour le chauffage des bâtiments. La seconde énergie est le **gaz** (28%) utilisée aussi pour le chauffage des bâtiments mais d'abord pour l'industrie. Enfin **l'électricité** représente 26% de la consommation du territoire. La part d'ENR ici considérée correspond à :

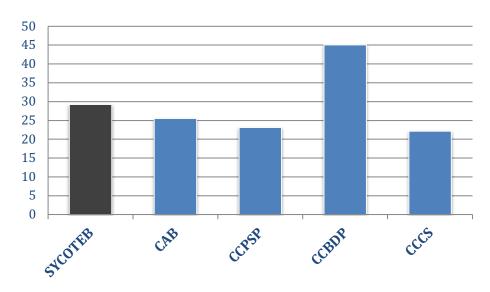
- la part de biocarburant dans l'essence vendue à la pompe (5,7% du total),
- la part du bois dans le chauffage des bâtiments (20,4% du total pour le résidentiel).


Consommations d'énergie du SYCOTEB Consommations par type et secteur, en MWh

2.1.3 Les consommations d'énergie par EPCI

Le détail des consommations par EPCI permet de mieux apprécier les typologies de consommation de chacune des collectivités, en fonction de son profil socio-économique et de sa démographie.

Consommations d'énergie du SYCOTEB Consommations par EPCI, en MWh

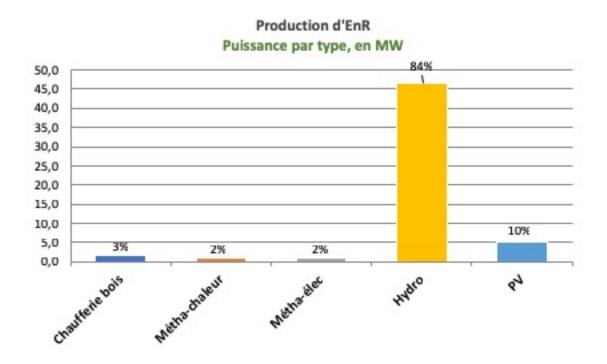


La consommation d'énergie apparaît corrélée :

- d'une part à la **population du territoire**, pour ce qui concerne le chauffage des bâtiments (résidentiel et tertiaire) et le transport des habitants (comme des marchandises),
- d'autre part à **l'activité du territoire**, les activités agricoles présentant une faible consommation d'énergie alors que des industries très consommatrices (papeterie et plasturgie) sont présentes sur le territoire.

Le ratio des consommations d'énergie par habitant permet de mettre en évidence la présence sur la CCBDP de ces deux industries consommatrices d'énergie, qui le modifient fortement. L'intérêt de disposer de tels acteurs majeurs est qu'on a alors des interlocuteurs bien identifiés disposant d'un poids important pour faire évoluer le profil du territoire à terme.

Consommations d'énergie du SYCOTEB Consommations par EPCI, en MWh / habitant

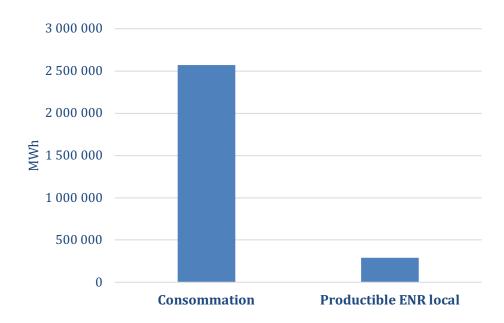

2.2 Production d'énergies renouvelables

2.2.1 Analyse de la capacité de production actuelle

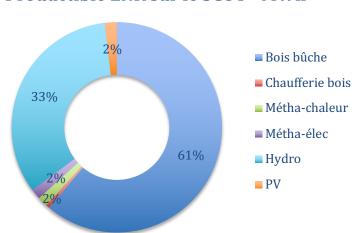
Le territoire du SCOT dispose d'une grande puissance installée d'énergie renouvelable, principalement en raison de la présence de deux usines hydroélectriques importantes. Le tableau et le graphique suivants présentent les installations du territoire et les puissances disponibles.

		CAB	CCPSP	CCBDP	cccs
Chaufferie industrielle	Biomasse - Puissance thermique (MW)			0,76	
Mise en place d'une chaufferie bois et de son réseau de chaleur sur la Commune de Cadouin	Biomasse - Puissance thermique (MW)			0,55	
CUMA éleveurs du Bargargeais	Biomasse - Puissance thermique (MW)	0,38			
CUMA éleveurs du Bergeracois	Biomasse - Puissance électrique (MW)	0,35			
Chaufferie bois pour EPHAD	Biomasse - Puissance thermique (MW)			0,32	
CAC Clatter Diamer	Biomasse - Puissance thermique (MW)			0,25	
SAS Clottes Biogaz	Biomasse - Puissance électrique (MW)			0,25	
CUMA éleveurs du Bergeracois (ferme	Biomasse - Puissance thermique (MW)	0,35			
Bergeracoise de Services)	Biomasse - Puissance électrique (MW)	0,35			
Chaufferie bois pour élevage	Biomasse - Puissance thermique (MW)			0,1	
BERGERAC	Puissance hydroelectrique (MW)	1,4			
MAUZAC	Puissance hydroelectrique (MW)			13,2	
TUILIERES	Puissance hydroelectrique (MW)			32	
Photovoltaïque diffus	Puissance solaire PV (MW)	2,6	0,7	1,3	0,7

Tableau des puissances ENR installées en MW



2.2.2 Analyse du productible ENR actuel


Les puissances ENR installées **produisent de l'énergie avec un certain rendement** qui est fonction en particulier du taux de fonctionnement sur l'année à puissance partielle :

- production estivale à basses eaux des usines hydroélectriques,
- production « météo-dépendante » des panneaux solaires...

En outre, dans le paysage des puissances installées n'apparaît pas le chauffage au bois des bâtiments. Il est donc nécessaire d'évaluer la consommation d'énergie réellement produite au cours d'une année par ces différentes voies de production renouvelable.

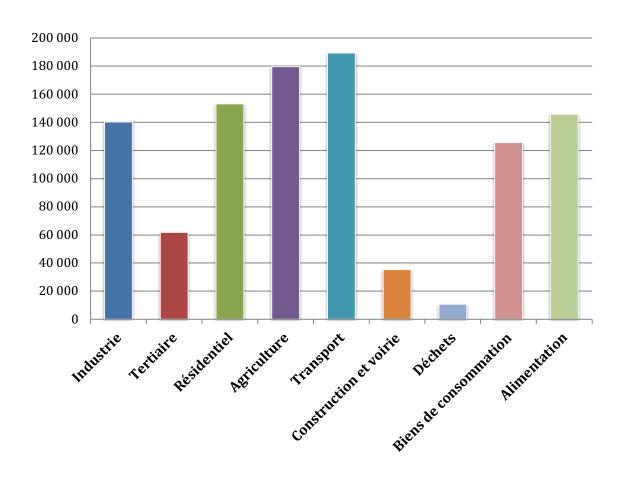
Les ENR produites localement s'élèvent à 290 000 MWh soit 11% de la consommation d'énergie du territoire qui atteint 2 600 000 MWh.

Productible ENR sur le SCOT - MWh

Du point de vue de la production annuelle d'énergie renouvelable, **la première ressource est le boisbûche utilisé dans le résidentiel** (61%) devant l'hydroélectricité (33%). Les autres énergies renouvelables ne représentent que 6% de ce total.

3. Le diagnostic des émissions de GES du territoire

3.1 Résultats globaux : Bilan Carbone® du territoire


Les résultats du Bilan Carbone[®] territorial sont présentés dans les tableaux et graphiques suivants. Les émissions comptabilisées sont donc celles des 6 Gaz à Effet de Serre [GES] du Protocole de Kyoto, et les résultats sont exprimés en « tonnes CO2 équivalentes » [tCO2e].

Le détail des calculs est présenté dans les chapitres suivants et en annexe. Les émissions de GES sont dues :

- aux **émissions énergétiques** : les émissions dues aux consommations d'énergie présentées au chapitre précédent,
- aux émissions non énergétiques: les émissions dues au transport et à la fabrication des matériaux de construction et des biens de consommation du territoire, aux émissions agricoles directes (volatilisation des engrais azotés en protoxyde d'azote, émissions de méthane des ruminants)...

3.1.1 Résultats globaux : Bilan Carbone® du territoire

BILAN CARBONE® du SYCOTEB Emissions directes et indirectes de GES par catégorie, en TCO2e

Le montant des émissions de GES produites annuellement sur le territoire est de1 000 000 tCO2e.

Qu'est-ce que cela représente ?

Ces émissions correspondent à :

- près de 127 000 tours de la terre en voiture,
- la combustion de 329 millions de litres de gasoil.

Sur le territoire, les **transports** sont le premier poste d'émission (18% au total pour les Déplacements de personnes et le Transport de Marchandises) devant **l'agriculture** (16% des émissions pour ce territoire très agricole), et le **bâtiment résidentiel** (15%).

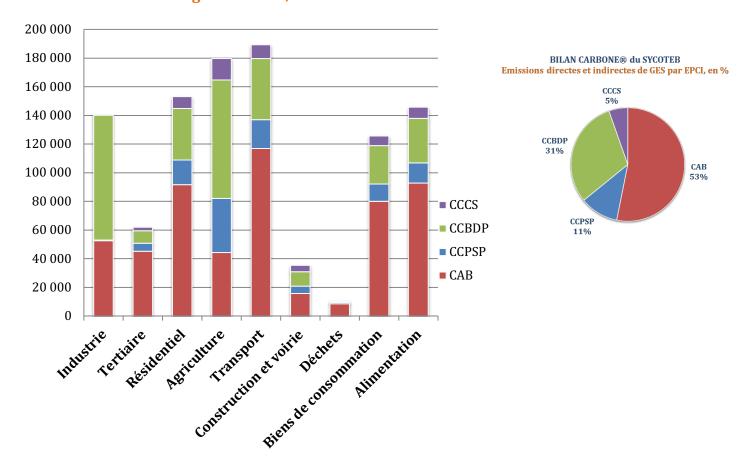
On note un **double-compte important entre le poste alimentation et le poste agriculture** (cf. chapitres concernés) : c'est la part d'auto-consommation des produits agricoles sur le territoire, c'est-à-dire la part de l'agriculture du territoire qui est consommée sur place par les habitants du territoire. Cette proportion n'est pas connue aujourd'hui.

Ce diagnostic va être détaillé poste par poste dans la suite du document afin d'identifier les principales causes des émissions, et donc les marges de manœuvre pour les réduire.

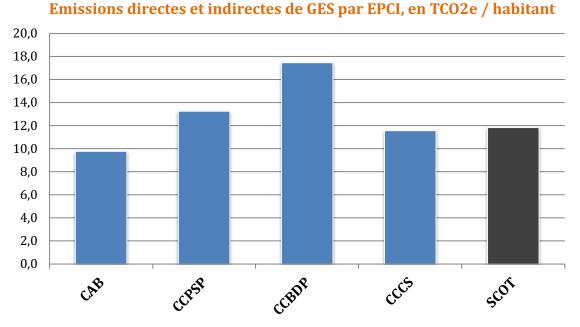
On observe que ces émissions sont corrélées en premier lieu :

- à la **démographie** : les territoires les plus peuplées induisent évidemment plus d'émissions de GES :
- à la nature des activités économiques : celle-ci est prépondérante, que ce soit l'activité industrielle ou l'activité agricole.

L'objectif du diagnostic n'est pas d'inciter à diminuer ces activités émettrices, mais au contraire d'identifier le moyen de les rendre moins émettrice pour mieux les développer, et les pérenniser, dans une perspective de développement territorial durable pour le long terme.


3.1.2 Résultats globaux : Bilan Carbone® par EPCI

Ces émissions de GES du territoire détaillées par EPCI nous offrent le profil suivant.


Pour la part des émissions liées fortement à la démographie (bâtiment résidentiel et transport), c'est la CAB qui apparaît comme le territoire le plus émetteur. Pour la part des émissions liées à l'activité économique, c'est la CCBDP qui produit la plus grande part des émissions, avec en particulier deux entreprises fortement consommatrices d'énergie, et une proportion importante de l'élevage du territoire.

Ceci se reflète sur le ratio des émissions moyennes par habitant, qui agrège pour chaque EPCI ces différents postes. A nouveau, l'objectif de ce diagnostic est **d'identifier les moyens de diminuer ces émissions tout en développant la démographie et l'activité**, dans un objectif de développement territorial durable

BILAN CARBONE® du SYCOTEB Emissions directes et indirectes de GES par catégorie et EPCI, en TCO2e

BILAN CARBONE® du SYCOTEB

3.2 Analyse par secteur : l'industrie

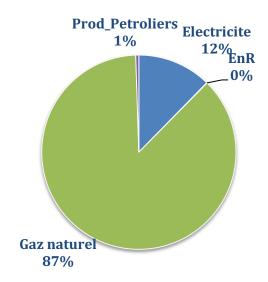
3.2.1 Sources

- Données énergie 2012 de l'ORECCA pour le volet industrie
- Contact direct avec les grands consommateurs du territoire

3.2.2 Méthodologie

Les sources citées précédemment donnent accès aux consommations en MWh sur les différents territoires du SYCOTEB, réparties par type d'énergie : électricité, énergie renouvelable, gaz, produit pétrolier.

Ces consommations sont converties en émissions de GES à partir des facteurs d'émissions à jour à date (version 7.1 du Bilan Carbone® Territoire), à savoir :


- Electricité en France 2012 : 0,082 kg CO2e par kWh
- Combustibles solides par défaut, France (DOM TOM inclus) : 0,033 kg CO2e par kWh PCI
- Gaz naturel, France (DOM TOM inclus): 0,241 kg CO2e par kWh PCI
- Fioul domestique, France (DOM TOM inclus): 0,329 kg CO2e par kWh PCI

3.2.3 Résultats et analyse

Les consommations d'énergie dues à l'industrie sont principalement liées au gaz. En réalité, 2 industries seulement, situés sur le territoire de la CCBDP concentrent à elles seules près de la moitié des consommations d'énergie du secteur :

- la papeterie MUNKSJO qui dispose d'une centrale de cogénération (plus de 200 000 kWh annuels soit 43 200 tCO2e),
- l'usine POLYREY (plus de 60 000 kWh annuels soit 13 400 tCO2e)

Industrie
Emissions directes et indirectes de GES par type, en %

3.2.4 Les premières pistes pour agir sur le territoire

- Mobiliser les gros consommateurs sur les économies d'énergie et les ENR.
- Mettre en place des démarches collectives par zones d'activités pour mutualiser des études, des équipements...

3.3 Analyse par secteur : le tertiaire

3.3.1 Sources

- Données énergie 2012 de l'ORECCA pour le volet tertiaire
- Nombre d'employés par type d'employeur (données INSEE)³
- Taux de climatisation dans le secteur tertiaire (données CEREN)⁴

3.3.2 Méthodologie

Les émissions de GES associées aux consommations d'énergie du secteur tertiaire sont estimées à partir des données de consommation de l'ORECCA converties en émissions de GES à partir des facteurs d'émissions à jour à date (version 7.1 du Bilan Carbone® Territoire), à savoir :

- Electricité en France 2012 : 0,082 kg CO2e par kWh
- Combustibles solides par défaut, France (DOM TOM inclus) : 0,033 kg CO2e par kWh PCI
- Gaz naturel, France (DOM TOM inclus): 0,241 kg CO2e par kWh PCI
- Fioul domestique, France (DOM TOM inclus): 0,329 kg CO2e par kWh PCI

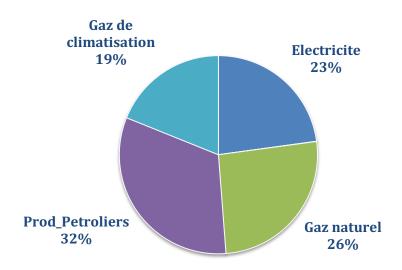
Concernant la climatisation, la puissance utilisée pour le tertiaire est estimée à partir du nombre d'employés par type d'employeur (données INSEE) et du taux de climatisation dans le secteur tertiaire (données CEREN) à savoir :

- Bureaux : 53% - Commerce : 45,2%

Les émissions de GES des climatisations sont ensuite estimées à partir du taux de fuite moyen des climatiseurs - 10% - et de leur taux de charge moyenne – 0,3 kg de fluide par kW frigo - (données issues de l'outil Clim_froid_V7 du Bilan Carbone®). Le facteur d'émissions utilisé est une moyenne des gaz réfrigérants les plus utilisées (version 7.1 du Bilan Carbone® Territoire) :

- R134a ou HFC-134a: 1 300 kg CO2e / kg de fluide

R404a: 3 940 kg CO2e / kg de fluide
R407c: 1 620 kg CO2e / kg de fluide
R410a: 1 920 kg CO2e / kg de fluide


3.3.3 Résultats et analyse

Aujourd'hui, avec le développement des climatisations, les **émissions directes estimées dues aux fuites des gaz frigorifiques** deviennent non négligeables dans le bilan du secteur tertiaire. Le premier poste d'émissions du secteur reste cependant la **consommation d'énergie des produits pétroliers** (fioul principalement).

³http://www.insee.fr/fr/themes/detail.asp?reg_id=99&ref_id=base-cc-entr-etab_

⁴ Etude sur Midi-Pyrénées, en l'absence d'étude équivalente sur l'Aquitaine

3.3.4 Les premières pistes pour agir sur le territoire

- Mobiliser les acteurs du tertiaire sur la rénovation du bâti.
- Mettre en œuvre des démarches collectives sectorielles pour les économies d'énergie.
- Sensibiliser à l'impact environnemental de la climatisation.

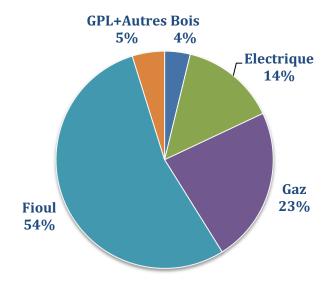
3.4 Analyse par secteur : le résidentiel

3.4.1 Sources

- Données énergie 2012 de l'ORECCA pour le volet résidentiel : consommation globale et répartition par source de chauffage.
- Données INSEE de recensement sur le nombre et la typologie des logements et des occupants (fournies aussi par l'ORECCA).

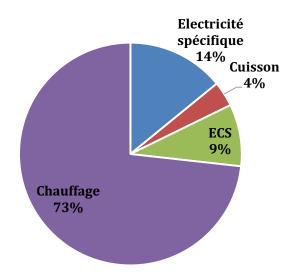
3.4.2 Méthodologie

L'ORECCA donne accès à la répartition des consommations d'énergie pour le résidentiel par territoire et par source de chauffage à savoir : bois, électrique, gaz, fioul, GPL.


Ces données sont converties en émissions de GES à partir des facteurs d'émissions à jour à date (version 7.1 du Bilan Carbone® Territoire), à savoir :

- Combustibles solides par défaut, France (DOM TOM inclus) : 0,033 kg CO2e par kWh PCI
- Electricité en France 2014 : 0,082 kg CO2e par kWh
- Gaz naturel, France (DOM TOM inclus): 0,241 kg CO2e par kWh PCI
- Fioul domestique, France (DOM TOM inclus): 0,329 kg CO2e par kWh PCI
- Gaz de pétrole liquéfié (gpl), France (DOM TOM inclus) : 0,269 kg CO2e par kWh PCI

3.4.3 Résultats et analyse


Les émissions du territoire sont principalement dues aux émissions du chauffage au fioul dans les maisons individuelles.

Résidentiel Emissions directes et indirectes de GES par source, en %

En effet comme le montrent les graphiques suivants :

- c'est le chauffage qui est le premier poste de consommation d'énergie (73%) ;
- et le parc résidentiel est principalement constitué de maisons individuelles (92%)

3.4.4 Les premières pistes pour agir sur le territoire

- Isoler le bâti : on sait réaliser le facteur 4 dans le domaine du bâtiment
 - Isoler une toiture
- → -20 à -25% 500 à 5 000 €
- Rénover une habitation
- → -60%
 → -95%
 25 000 à 50 000 €
 → 3 000 à 15 000 €
- Substituer le fioul par des ENRSensibiliser les habitants
- → -95% 3 000 à 15 000 €
 → -7% en moyenne très facilement⁵
- Ecogestes
- Equipements efficaces

⁵Les expériences de mobilisation citoyenne de type « Famille à Energie Positive » montrent un gain de 12% en moyenne sur 29 000 familles engagées.

3.5 Analyse par secteur : l'agriculture

3.5.1 Sources

- Données énergie 2012 de l'ORECCA pour le volet agriculture
- Données sur l'élevage et la culture fournies par la DRAAF : nombre de têtes par type d'élevage, et surfaces agricoles utiles par type de cultures

3.5.2 Méthodologie

Les émissions de GES associées aux consommations d'énergie du secteur agricole sont estimées à partir des données de consommation de l'ORECCA converties en émissions de GES à partir des facteurs d'émissions à jour à date (version 7.1 du Bilan Carbone® Territoire), à savoir :

- Electricité en France 2012 : 0,082 kg CO2e par kWh
- Combustibles solides par défaut, France (DOM TOM inclus) : 0,033 kg CO2e par kWh PCI
- Gaz naturel, France (DOM TOM inclus): 0,241 kg CO2e par kWh PCI
- Fioul domestique, France (DOM TOM inclus): 0,329 kg CO2e par kWh PCI

En complément de ces émissions, sont calculées les émissions liées à la culture (ex. : recours aux engrais) et à l'élevage (ex. : alimentation, rumination). Les facteurs d'émissions utilisées pour ce calcul sont aussi les derniers à jour à date (version 7.1 du Bilan Carbone® Territoire), à savoir :

- Emissions de GES par type d'animal (hors énergie)

Exemples:

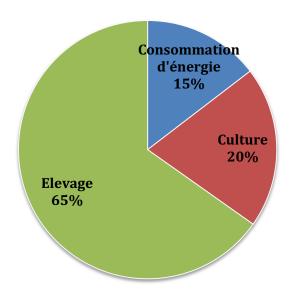
Bœuf: 3070 kg CO2e / animal.an
 Chèvre: 1322 kg CO2e / animal.an
 Poulet fermier: 31 kg CO2e / animal.an
 Vache laitière: 5698 kg CO2e / animal.an

- Unité d'Azote à l'hectare en région Aquitaine associé au facteur de volatilisation de l'azote (2,09%)

Exemples:

o Blé dur : 172 unité d'Azote / hectar. an

o Blé tendre: 156 172 unité d'Azote / hectar. An


3.5.3 Résultats et analyse

Les émissions agricoles sont principalement non énergétiques, et liées à l'élevage de ruminant, malgré un nombre très important de volailles.

	CAB	CCPSP	CCBDP	cccs	SCOT
Elevages bovins	4945	4006	12621	1575	23147
Elevages ovins	1559	1745	4459	225	7988
Elevages volailles	98721	103021	424078	58049	683869
Elevgaes porcins	3377	0	0	0	3377
Elevages caprins	5549	0	0	0	5549

Agriculture

Emissions directes et indirectes de GES par source, en %

3.5.4 Les premières pistes pour agir sur le territoire

- Eléments de contexte

Pour une même culture, les pratiques culturales sont déterminantes : des facteurs 3 à 5 dans les émissions de GES d'exploitation observés sur des exploitations européennes comparables (AgriClimateChange). En outre, les éléments statistiques aujourd'hui disponibles seront à affiner : les émissions de GES d'une vache d'ensilage et d'un bœuf élevé en plein champs ne sont pas les mêmes.

- Eléments d'action

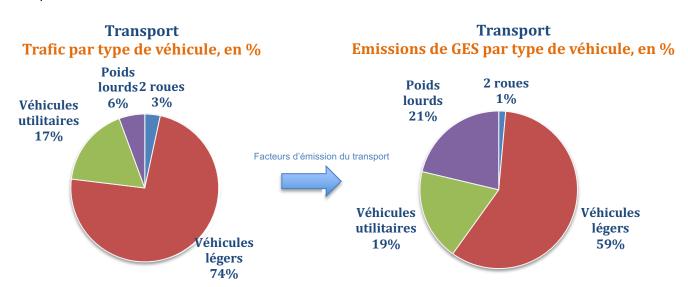
- Agronomie (équilibre de la fertilisation azotée, réduction de travail du sol, cultures intermédiaires...)
- Stockage de carbone (semis directs et couverts végétaux, agroforesterie...)
- o **Energie** (réglage des tracteurs et conduite économique, ENR)
- Elevage (optimisation énergétique des bâtiments et traitements, séchage solaire de fourrage...)

3.6 Analyse par secteur : le transport

3.6.1 Sources

Données énergie 2012 de l'ORECCA pour le volet transport : consommation finale par habitant et par type de véhicule

3.6.2 Méthodologie


Les données de l'ORECCA (consommation finale par habitant) associées au nombre d'habitants sur chacun des territoires nous permet d'estimer la consommation finale totale de chacun des territoires du SYCOTEB, discriminée par type de véhicule: 2 roues, véhicules légers, véhicules utilitaires, poids lourds.

Ces consommations sont converties en émissions de GES à partir des facteurs d'émissions à jour à date (version 7.1 du Bilan Carbone® Territoire), à savoir :

- Essence à la pompe (SP 95 SP 98), France continentale : 2,80 kg CO2e par litre
- Gasoil routier, France (DOM TOM inclus): 3,17 kg CO2e par litre

3.6.3 Résultats et analyse

Les émissions de GES du transport sont principalement liées aux déplacements des habitants en véhicules particuliers. Le jeu des facteurs d'émission fait que les véhicules particuliers, avec 74% du trafic, n'émettent « que » 59% des GES induits par les transports (un poids lourd est 4 fois plus émetteur qu'une voiture au kilomètre.

3.6.4 Les premières pistes pour agir sur le territoire

Eléments de contexte

L'aménagement et les choix d'urbanisme quident la performance long terme du territoire sur les transports : 5 km par jour en voiture correspondent à un doublement des émissions de GES d'un ménage habitant dans une maison BBC.

Eléments d'action

De nombreuses actions sont possibles, organisationnelles comme technologiques :

- -100% Covoiturage 0€ Télétravail 1 i/semaine -20% 0€ **>** Véhicule électrique **→** -75% + bruit. air +10 000 €/véhicule -80%
 - Agrocarburant, biogaz

3.7 Analyse par secteur: la construction et la voirie

3.7.1 Sources

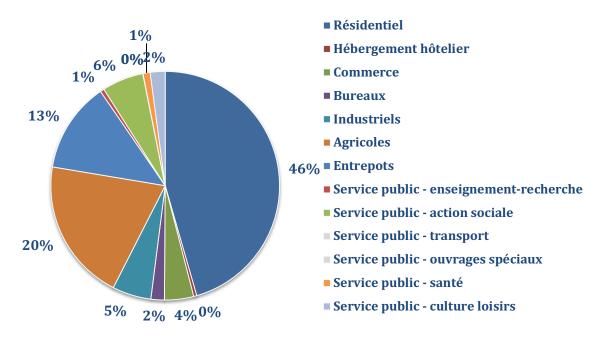
- Données statistiques du MEDDE concernant les constructions de logements et non résidentielles en Aquitaine⁶.

3.7.2 Méthodologie

Les surfaces fournies par le MEDDE pour chacune des communes du SYCOTEB sont converties en émissions de GES à partir de facteurs d'émissions reconstitués (à partir des données de la version 7.1 du Bilan Carbone® Territoire) à savoir :

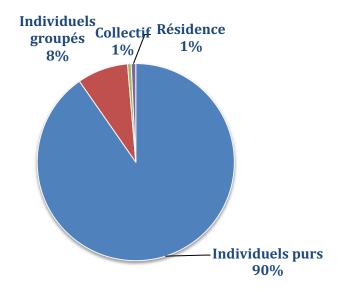
- Bâtiments agricoles (moyenne béton métal) : 438 kg CO2e / m2
- Bâtiments industriels (moyenne béton métal) : 550 kg CO2e / m2
- Bureaux (moyenne béton métal) : 313,5 kg CO2e / m2
- Commerces (moyenne béton métal) : 366,5 kg CO2e / m2
- Enseignement (béton): 440 kg CO2e / m2
- Garages (moyenne béton métal) : 438 kg CO2e / m2
- Logements (béton): 436 kg CO2e / m2
- Loisirs (moyenne béton métal) : 337,5 kg CO2e / m2
- Parkings (moyenne normaux intensifs): 169 kg CO2e / m2
- Santé (béton) : 440 kg CO2e / m2

Ces émissions correspondent donc à des **émissions indirectes**: les émissions de GES qui ont été nécessaires pour la **fabrication puis le transport des matières premières** utilisées pour la construction. Le 1^{er} poste d'un chantier est généralement celui des matériaux du gros œuvre (béton ou brique).


3.7.3 Résultats et analyse

Le premier poste d'émissionsdans le domaine de la construction sur le territoire est celui de la construction résidentielle.

⁶http://www.statistiques.developpement-durable.gouv.fr/logement-construction/i/construction.html

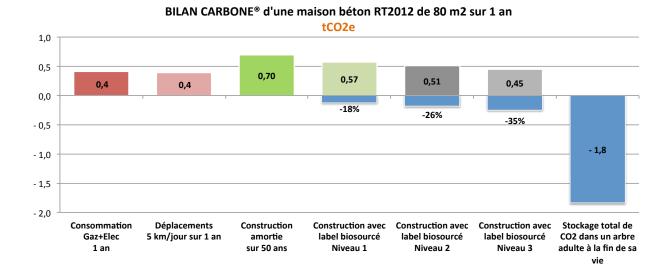

Construction et voirie

Emissions directes et indirectes de GES par source, en %

Un focus sur la construction résidentielle permet de voir qu'il s'agit là très majoritairement de construction de maisons individuelles. Cela signifie qu'en plus de l'impact direct de la construction, cela participe à l'étalement urbain, et donc à terme à l'augmentation de l'impact GES des transports.

Construction et voirie Emissions directes et indirectes de GES détaillées pour le résidentiel, en %

3.7.4 Les premières pistes pour agir sur le territoire


- Augmenter la part de matériaux biosourcés et locaux dans la construction.
- Travailler à la réutilisation locale des gravats de chantier (broyage sur place).

- Améliorer la densité des zones d'habitat et d'activité par un urbanisme durable à l'échelle du SCOT, tout en préservant leur qualité.

3.7.5 Focus sur les matériaux biosourcés

Les matériaux **biosourcés** sont les matériaux **d'origine naturelle**: structure et bardage bois, laines végétales (bois, chanvre etc.), laines animales (mouton etc.), paille... Provenant de matière vivante, ils représentent un stockage de carbone, et permettent donc de diminuer et compenser les émissions de GES du chantier de construction.

Il existe désormais un label « bâtiment biosourcé », qui permet d'analyser les projets selon 3 niveaux d'incorporation de matériaux naturels (Cf. Annexe 2). Les matériaux biosourcés correspondent à du stockage de carbone puisqu'ils sont constitués de matière organique. Ainsi, l'incorporation de matériaux biosourcés permet de diminuer l'impact environnemental de la phase de construction.

<u>Rappel</u>: les émissions de GES des bâtiments modernes, sur leur durée de vie, sont principalement le fait des émissions dues à la phase de construction, et non de fonctionnement, contrairement aux bâtiments anciens qui consommaient 5 fois plus d'énergie. Le transport devient alors le premier poste de dépense énergétique des occupants de ces bâtiments énergétiquement efficaces.

3.8 Analyse par secteur : les déchets

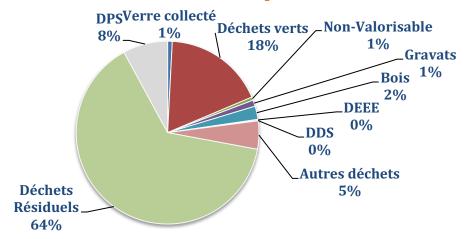
3.8.1 Sources

- Données du syndicat départemental de traitement des déchets SMD3concernant les tonnages de déchets traités en 2015 par nature et par EPCI.

3.8.2 Méthodologie

Les tonnages de déchets sont convertis en émissions de GES à partir des facteurs d'émissions à jour à date (version 7.1 du Bilan Carbone® Territoire), à savoir :

- Métaux (mix du traitement en France Métropolitaine) : 33 kg CO2e par tonne
- Verre (mix du traitement en France Métropolitaine) : 33 kg CO2e par tonne
- Plastique (mix du traitement en France Métropolitaine) : 880 kg CO2e par tonne
- Carton (mix du traitement en France Métropolitaine) : 130 kg CO2e par tonne
- Papier (mix du traitement en France Métropolitaine) : 235 kg CO2e par tonne
- Déchets alimentaires (mix du traitement en France Métropolitaine) : 336 kg CO2e par tonne
- Ordures ménagères moyenne (mix du traitement en France Métropolitaine) : 357 kg CO2e / tonne
- Divers non combustible et non fermentescible (mix du traitement en France Métropolitaine) : 33 kg CO2e par tonne


3.8.3 Résultats et analyse

L'impact GES de ce poste n'est **pas représentatif de l'impact environnemental complet du problème des déchets**. En effet, jeter des bouteilles en plastique par terre n'émet aucun gaz à effet de serre pour leur traitement, mais dégrade très rapidement l'environnement!

Les déchets collectés sont bien sûr proportionnels à la population. L'impact du transport est inclus dans le poste « transport de marchandises» dans les émissions des poids lourds comptabilisées sur le territoire.

Le contenu carbone lié à la fabrication des matériaux ainsi jetés est évalué dans le poste « biens de consommation».

Déchets Emissions directes et indirectes de GES par source, en %

3.8.4 Les premières pistes pour agir sur le territoire

- Déployer une stratégie de réduction des OMR décentralisée : compostage, distribution de poules...

-	Développer le réemploi (ressourceries, bourses d'échanges). Favoriser le recyclage.						

3.9 Analyse par secteur : les biens de consommation

3.9.1 Sources

- Données ORECCA concernant le nombre d'habitants sur chacun des territoires
- Etude du Commissariat Général au Développement Durable sur le poids GES des biens de consommation7

3.9.2 Méthodologie

Les émissions de GES associées aux biens de consommation achetés et utilisés sur le territoire sont estimées à partir d'un ratio moyen d'émissions par habitant en France. L'impact GES des véhicules a été évalué via la partie « fabrication » du Facteur d'Emission du Bilan Carbone[®], pour coller au mieux à la réalité de la mobilité sur le territoire.

Type de bien	t CO2e/français
Biens d'équipement (meubles)	0,3
Habillement	0,32
Equipements électrique et électronique	0,35
Automobile	0,46
Total (biens de consommation)	1,43

3.9.3 Résultats et analyse

Les émissions ainsi évaluées sont directement proportionnelles à la population. Aujourd'hui, on n'a pas d'élément supplémentaire sur les modes de consommation qui pourraient différencier les territoires.

3.9.4 Les premières pistes pour agir sur le territoire

- Travailler sur les circuits courts, le réemploi.
- Développer et promouvoir les filières locales pour réduire l'impact du fret, favoriser l'emploi et les ressources locales.

-

⁷ « Le Point Sur » n°114 – Mars2012

3.10 Analyse par secteur : l'alimentation

3.10.1 Sources

Données ORECCA concernant le nombre d'habitants sur chacun des territoires

3.10.2 Méthodologie

Les émissions de GES associées à l'alimentation sont estimées à partir d'un ratio moyen d'émissions par habitant en France issu du Bilan Carbone[®].

Type de repas	kg CO2e par repas
Repas moyen	2,27
Repas végétarien	0,44
Repas à dominante végétale (avec poulet)	0,59
Repas à dominante végétale (avec bœuf)	1,65
Repas classique (avec poulet)	1,10
Repas classique (avec bœuf)	4,51
Repas à dominante animale (avec poulet)	1,32
Repas à dominante animale (avec bœuf)	5,65
Repas Poulet/Manioc/Bananes	0,74
Repas Poisson/Riz/Tomates	0,47

On tient compte de 2 repas moyens par jour (repas complets avec viande) et du petit déjeuner (impact GES moindre). Il s'agit bien ici de la **nourriture consommée sur le territoire**.

3.10.3 Résultats et analyse

Les émissions sont **proportionnelles au nombre d'habitant** et sont légèrement inférieures aux émissions de l'agriculture du territoire. Cependant, ce poste est clairement pour partie en **double-compte avec le poste « Agriculture ».** Cela met en lumière une possible « autosuffisance alimentaire » théorique du territoire.

Mais aujourd'hui, la part d'auto-consommation agricole du territoire n'est pas connue. Certaines exportations et importations de produits agricoles, génératrices de fret, pourraient ainsi idéalement être évitées.

Ce poste relève des mêmes plans d'action que ceux à mettre en œuvre sur l'agriculture et le fret de produits agricoles.

3.10.4 Les premières pistes pour agir sur le territoire

- L'amélioration de la connaissance de la part d'auto-consommation agricole du territoire.
- Le travail spécifique avec les grandes surfaces, les coopératives, et l'industrie agro-alimentaire sur l'approvisionnement local.
- La promotion de nourritures locales, de saison, moins carnées.

3.10.5 Focus sur les circuits courts

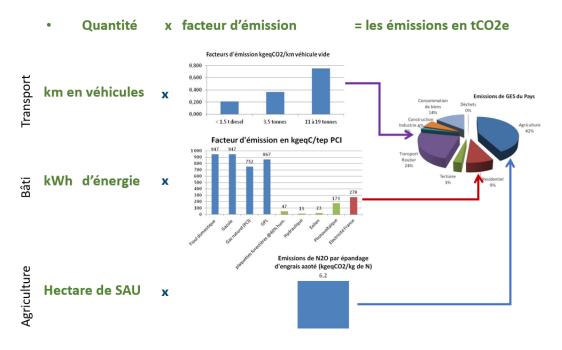
Le développement des circuits courts alimentaires a un double effet : valorisation des ressources et de l'emploi locaux, et diminution du poste de transport de fret. Le bilan environnemental n'est pas systématiquement bénéfique à court terme, mais c'est une pratique à recommander dans le cadre des PCET car porteuse d'un fort potentiel de production et de consommation durables (cf. ci-dessous l'avis de l'ADEME).

Avis de l'ADEME sur les circuits courts alimentaires de proximité⁸. :

Les circuits courts alimentaires de proximité constituent aujourd'hui une opportunité économique non négligeable que ce soit pour le producteur (sécurisation de son modèle économique), le consommateur (prix ajusté au coût réel) ou un territoire (création d'emplois locaux). S'ils ont une influence plutôt positive sur l'environnement, la diversité des circuits courts de proximité, ainsi que le manque d'études complètes ne permettent pas d'affirmer que les circuits courts présentent systématiquement un meilleur bilan environnemental que les circuits longs, notamment en matière de consommation d'énergie et d'émissions de gaz à effet de serre.

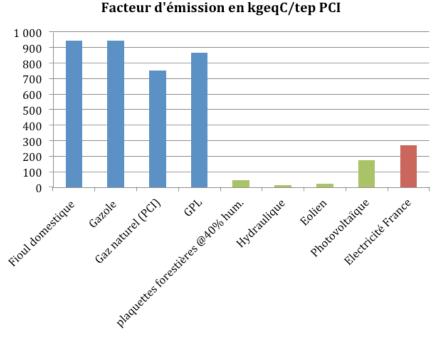
Les modes de production et notamment la culture, pour les fruits et légumes, de produits de saison sont beaucoup plus déterminants en matière de bilan environnemental que le mode de distribution. Par ailleurs, plus de proximité ne signifie pas nécessairement moins d'émissions de gaz à effet de serre si les moyens de transports utilisés sont inadaptés, si la logistique est insuffisamment optimisée ou si le comportement du consommateur est inadéquat.

En renforçant le lien entre producteur et consommateur et en redonnant du sens tant à l'activité de production qu'à l'acte de consommation, les circuits courts de proximité présentent un réel potentiel en matière de consommation durable. Il convient d'accompagner les initiatives et de partager les bonnes pratiques afin d'optimiser les gains environnementaux portés par ces modes de distribution.


Complémentaires des circuits longs, les circuits courts de proximité doivent permettre de répondre autant que possible localement à une partie des besoins alimentaires de la population d'un territoire, en fonction de la capacité agronomique du territoire et en restant vigilant sur leur performance environnementale.

⁸http://www2.ademe.fr/servlet/getBin?name=80DF11056EB01E4186DD59C25A7A0874 tomcatlocal1335949899818.pdf

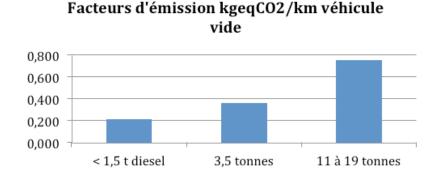
4. Annexe 1 : le bilan carbone


Qu'est-ce qu'un Facteur d'Emission?

Toute activité induit des consommations d'énergie ou des processus chimiques ou biologiques. On sait comptabiliser pour chaque activé humaine ou naturelle les Gaz à Effet de Serre qu'elle émet de ce fait. Le facteur d'émission c'est la quantité de Gaz à Effet de Serre émise par une activité, rapportée à une de de cette activité. La base données des Facteurs d'Emissions (http://www.basecarbone.fr/) utilisée dans l'outil Bilan Carbone recense ainsi plus de 4000 facteurs dans tous les domaines d'activité : émissions de GES d'1 km parcouru en ville en petite cylindrée, de la production d'1 tonne d'acier neuf, de la construction d'1 m2 de bâtiment béton etc.

A titre d'illustration sont présentés page suivante quelques-uns des facteurs d'émission utilisés.

Facteurs d'émission des énergies



Il est important de noter que :

- les énergies fossiles sont bien plus émettrices que les autres, mais parmi elles le gaz est la moins émettrice (environ -30% par rapport au fioul par exemple);
- l'électricité nucléaire a un faible facteur d'émission moyen, mais en réalité le contenu GES du kWh électrique fait plus que tripler entre l'été et l'hiver, en raison de la mise en œuvre en hiver des moyens de production les plus émetteurs de CO2 (centrales thermiques). Le chauffage électrique est donc presque autant émetteur de GES que le chauffage au gaz !
- les énergies renouvelables ont un faible facteur d'émission par nature, sauf les panneaux photovoltaïques, qui contiennent du silicium issu de haute technologie et haute température.

Facteurs d'émission des transports

Un poids lourd est environ 4 fois plus émetteur qu'un véhicule particulier au km.

5. Annexe 2 : le détail des consommations d'énergie et émissions de GES par EPCI

Le tableau suivant présente les consommations d'énergie par type, par énergie, et par EPCI.

MWh	Energie	SYCOTEB	CAB	CCPSP	CCBDP	cccs
	Electricite	210 909	106 269	3 278	98 375	2 987
Industrie	EnR	2 736	2 332	74	318	12
maustrie	Gaz	507 852	179 898	0	327 954	0
	Prod_Petroliers	2 226	1 696	135	313	82
	Electricite	172 085	118 422	13 398	32 326	7 938
Tertiaire	EnR	779	0	0	779	0
Tertiane	Gaz	66 599	61 432	0	5 166	0
	Prod_Petroliers	60 698	41 108	4 968	11 728	2 895
	Electricite	265 012	167 513	27 728	55 043	14 728
Résidentiel	EnR	176 686	84 790	24 793	53 048	14 055
Residentiel	Gaz	147 168	134 835	333	11 853	147
	Prod_Petroliers	279 001	131 926	43 238	83 675	20 162
	Electricite	17 001	6 046	3 270	4 764	2 921
Agriculture	EnR	0	0	0	0	0
Agriculture	Gaz	3 727	3 322	0	405	0
	Prod_Petroliers	72 753	23 816	15 106	23 132	10 700
	Electricite	0	0	0	0	0
Transport	EnR	33 121	20 433	3 508	7 470	1 710
Transport	Gaz	0	0	0	0	0
	Prod_Petroliers	553 044	344 568	57 322	123 218	27 935
	Electricite	665 007	398 250	47 674	190 509	28 574
Total	EnR	213 322	107 555	28 375	61 616	15 777
Iotai	Gaz	725 345	379 488	333	345 378	147
	Prod_Petroliers	967 723	543 115	120 769	242 065	61 774
	TOTAL	2 571 397	1 428 407	197 151	839 568	106 271

Le tableau précédent, complété par toutes les émissions de GES indirectes (construction, traitement des déchets, biens de consommation, alimentation), permet d'obtenir les émissions de GES suivantes par poste et par EPCI.

tCO2e	САВ	CCPSP	CCBDP	cccs	SCOT
Industrie	52 634	316	87 088	272	140 309
Tertiaire	45 253	5 551	8 578	2 443	61 825
Résidentiel	91 602	17 169	36 143	8 233	153 147
Agriculture	44 335	37 646	71 343	14 891	168 215
Transport	116 899	20 026	42 673	9 760	189 358
Construction et voirie	15 712	5 008	10 137	4 529	35 386
Déchets	8 423	1 055	620	624	10 722
Biens de consommation	80 016	12 184	26 619	6 860	125 679
Alimentation	92 799	14 130	30 872	7 956	145 757
Total	547 674	113 084	314 073	55 567	1 030 399

6. Annexe 3 : liste des communes

Les communes prises en compte dans l'étude sont les suivantes :

Commune	Code postal	Code insee	EPCI
BERGERAC	24100	24037	CAB
BOSSET	24130	24051	CAB
BOUNIAGUES	24560	24054	CAB
COLOMBIER	24560	24126	CAB
COURS-DE-PILE	24520	24140	CAB
CREYSSE	24100	24145	CAB
CUNEGES	24240	24148	CAB
FRAISSE	24130	24191	CAB
GAGEAC-ET-ROUILLAC	24240	24193	CAB
GARDONNE	24680	24194	CAB
GINESTET	24130	24197	CAB
LA FORCE	24130	24222	CAB
LAMONZIE-MONTASTRUC	24520	24224	CAB
LAMONZIE-SAINT-MARTIN	24680	24225	CAB
LE FLEIX	24130	24182	CAB
LEMBRAS	24100	24237	CAB
LUNAS	24140	24246	CAB
MESCOULES	24240	24267	CAB
MONBAZILLAC	24240	24274	CAB
MONESTIER	24240	24276	CAB
MONFAUCON	24130	24277	CAB
MOULEYDIER	24520	24296	CAB
POMPORT	24240	24331	CAB
PRIGONRIEUX	24130	24340	CAB
QUEYSSAC	24140	24345	CAB
RAZAC-DE-SAUSSIGNAC	24240	24349	CAB
RIBAGNAC	24240	24351	CAB
ROUFFIGNAC-DE-SIGOULES	24240	24357	CCCS
SAINT-GEORGES-BLANCANEIX	24130	24413	CCCS
SAINT-GERMAIN-ET-MONS	24520	24419	CCCS
SAINT-GERY	24400	24420	CCCS
SAINT-LAURENT-DES-VIGNES	24100	24437	CCCS
SAINT-NEXANS	24520	24472	CCCS
SAINT-PIERRE-D'EYRAUD	24130	24487	CCCS
SAINT-SAUVEUR	24520	24499	CCCS
SAUSSIGNAC	24240	24523	CCCS
SIGOULES	24240	24534	CCCS
THENAC	24240	24549	CCCS
BARDOU	24560	24024	CCPSP
BOISSE	24560	24045	CCPSP
CONNE-DE-LABARDE	24560	24132	CCPSP
EYMET	24500	24167	CCPSP
FAURILLES	24560	24176	CCPSP
FAUX	24560	24177	CCPSP
FLAUGEAC	24500	24181	CCPSP
FONROQUE	24500	24186	CCPSP
ISSIGEAC	24560	24212	CCPSP
MONMADALES	24560	24278	CCPSP
MONMARVES	24560	24279	CCPSP
MONSAGUEL	24560	24282	CCPSP
MONTAUT	24560	24287	CCPSP
PLAISANCE	24560	24168	CCPSP
RAZAC-D'EYMET	24500	24348	CCPSP
SADILLAC	24500	24359	CCPSP
SAINT-AUBIN-DE-CADELECH	24500	24373	CCPSP
SAINT-AUBIN-DE-LANQUAIS	24560	24374	CCPSP
SAINT-CAPRAISE-D'EYMET	24500	24383	CCPSP
SAINT-CERNIN-DE-LABARDE	24560	24385	CCPSP

SAINT-JULIEN-D'EYMET	24500	24433	CCPSP
SAINT-LEON-D'ISSIGEAC	24560	24441	CCPSP
SAINT-PERDOUX	24560	24483	CCPSP
SAINTE-EULALIE-D'EYMET	24500	24402	CCPSP
SAINTE-INNOCENCE	24500	24423	CCPSP
SAINTE-RADEGONDE	24560	24492	CCPSP
SERRES-ET-MONTGUYARD	24500	24532	CCPSP
SINGLEYRAC	24500	24536	CCPSP
ALLES-SUR-DORDOGNE	24480	24005	CCBDP
BADEFOLS-SUR-DORDOGNE	24150	24022	CCBDP
BANEUIL	24150	24023	CCBDP
BAYAC	24150	24023	CCBDP
=	#N/A	24027	
BEAUMONT-DU-PERIGORD	24540	24028	CCBDP
BIRON			CCBDP
BOUILLAC	24480	24052	CCBDP
BOURNIQUEL	24150	24060	CCBDP
CALES	24150	24073	CCBDP
CAPDROT	24540	24080	CCBDP
CAUSE-DE-CLERANS	24150	24088	CCBDP
COUZE-ET-SAINT-FRONT	24150	24143	CCBDP
GAUGEAC	24540	24195	CCBDP
LABOUQUERIE	24440	24219	CCBDP
LALINDE	24150	24223	CCBDP
LANQUAIS	24150	24228	CCBDP
LAVALADE	24540	24231	CCBDP
LE BUISSON-DE-CADOUIN	24480	24068	CCBDP
LIORAC-SUR-LOUYRE	24520	24242	CCBDP
LOLME	24540	24244	CCBDP
MARSALES	24540	24257	CCBDP
MAUZAC-ET-GRAND-CASTANG	24150	24260	CCBDP
MOLIERES	24480	24273	CCBDP
MONPAZIER	24540	24280	CCBDP
MONSAC	24440	24281	CCBDP
MONTFERRAND-DU-PERIGORD	24440	24290	CCBDP
NAUSSANNES	24440	24307	CCBDP
NOJALS-ET-CLOTTE	24440	24310	CCBDP
PEZULS	24510	24327	CCBDP
PONTOURS	24150	24334	CCBDP
PRESSIGNAC-VICQ	24150	24338	CCBDP
RAMPIEUX	24440	24347	CCBDP
SAINT-AGNE	24520	24361	CCBDP
SAINT-AVIT-RIVIERE	24540	24378	CCBDP
SAINT-AVIT-SENIEUR	24440	24379	CCBDP
	1	-	
SAINT-CAPRAISE-DE-LALINDE	24150 24540	24382	CCBDP CCBDP
SAINT-CASSIEN		24384	
SAINT-FELIX-DE-VILLADEIX	24510	24405	CCBDP
SAINT-MARCEL-DU-PERIGORD	24510	24445	CCBDP
SAINT-MARCORY	24540	24446	CCBDP
SAINT-ROMAIN-DE-MONPAZIER	24540	24495	CCBDP
SAINTE-CROIX	24440	24393	CCBDP
SAINTE-FOY-DE-LONGAS	24510	24407	CCBDP
SAINTE-SABINE-BORN	24440	24497	CCBDP
SOULAURES	24540	24542	CCBDP
URVAL	24480	24560	CCBDP
VARENNES	24150	24566	CCBDP
VERDON	24520	24570	CCBDP
VERGT-DE-BIRON	24540	24572	CCBDP

